
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 7 November 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 7 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 14 November 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 7.1 k-sums (1 point).

We say that an integer n ∈ N is a k-sum if it can be wri�en as a sum n = ak1 + · · ·+akp where a1, . . . , ap
are distinct natural numbers, for some arbitrary p ∈ N.

For example, 36 is a 3-sum, since it can be wri�en as 36 = 13 + 23 + 33.

Describe a DP algorithm that, given two integers n and k, returns True if and only if n is a k-sum. Your
algorithm should have asymptotic runtime complexity at most O(n1+ 2

k ).

Hint: �e intended solution has complexity O(n1+ 1
k ).

In your solution, address the following aspects:

1. Dimensions of the DP table: What are the dimensions of the DP table?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry have
been determined in previous steps?

5. Extracting the solution: How can the solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Solution:

Given n and k, let m = bn1/kc be the largest integer such that mk ≤ n.

1. Dimensions of the DP table: DP [0 . . . n][0 . . .m]

2. De�nition of the DP table: DP [i][j] is True if, and only if, i can be wri�en as a sum i = ak1 + · · ·+akp
where p ∈ N, the (a`)1≤`≤p are distinct, and {a1, . . . , ap} ⊆ {1..j}.



3. Computation of an entry: DP can be computed recursively as follows:

DP [0][j] = True 0 ≤ j ≤ m (1)
DP [i][0] = False 0 < i ≤ n (2)

DP [i][j] = DP [i− jk][j − 1] or DP [i][j − 1] jk ≤ i ≤ n (3)
DP [i][j] = DP [i][j − 1] otherwise. (4)

Equation (1) expresses that 0 can always be wri�en as an (empty) sum of distinct integers in any
interval {1..j}. Equation (2) says that non-zero values cannot be obtained as a sum of integers in
{1..0} = ∅. Equation (3) and (4) provide the recurrence relation. An integer j can be obtained as a
sum i = ak1 + · · ·+ akp of distinct integers in {1..j} i� either

(a) Some a` (for example, ap) is j and the rest of the sum is ak1 + · · ·+ akp−1 = i− akp = i− jk, such
that {a1, . . . , ap−1} ⊆ {1..j − 1} or

(b) No a` is j, and ak1 + · · ·+ akp = i is a sum of integers from {1..j − 1}.

Case (a) corresponds to DP [i − jk][j − 1], case (b) to DP [i][j − 1]. When jk < i, both cases are
possible, and we obtain formula (3); when jk > i, only case (2) is possible, and we obtain (4).

4. Calculation order: Following the recurrence relations above, we can compute �rst by order of in-
creasing j, and then in an arbitrary order for i (for example, in increasing order).

5. Extracting the solution: �e solution isDP [n][m], since any a` that appears in a sum ak1+· · ·+akp = n

is such that ak` ≤ n, which implies a` ≤ bn1/kc = m.

6. Running time: �e running time of the solution isO(n·n
1
k ) = O(n1+ 1

k ) as there are (n+1)·(m+1) =

O(nm) = O(n · n
1
k ) entries in the table, we process each entry in O(1) time, and the solution is

extracted in O(1) time.

Exercise 7.2 Road trip.

You are planning a road trip for your summer holidays. You want to start from city C0, and follow
the only road that goes to city Cn from there. On this road from C0 to Cn, there are n − 1 other
cities C1, . . . , Cn−1 that you would be interested in visiting (all cities C1, . . . , Cn−1 are right on the
road from C0 to Cn). For each 0 ≤ i ≤ n, the city Ci is at kilometer ki of the road for some given
0 = k0 < k1 < . . . < kn−1 < kn.

You want to decide in which cities among C1, . . . , Cn−1 you will make an additional stop (you will stop
in C0 and Cn anyway). However, you do not want to drive more than d kilometers without making a
stop in some city, for some given value d > 0 (we assume that ki < ki−1 + d for all i ∈ [n] so that
this is satis�able), and you also don’t want to travel backwards (so from some city Ci you can only go
forward to cities Cj with j > i).

(a) Provide a dynamic programming algorithm that computes the number of possible routes from C0

to Cn that satis�es these conditions, i.e., the number of allowed subsets of stop-cities. In order to
get full points, your algorithm should have O(n2) runtime.

Address the same six aspects as in Exercise 7.1 in your solution.

Solution:

1. Dimensions of the DP table: �e DP table is linear, and its size is n + 1.

2



2. De�nition of the DP table: DP [i] is the number of possible routes from C0 to Ci (which stop at
Ci).

3. Computation of an entry: Initialize DP [0] = 1.

For every i > 0, we can compute DP [i] using the formula

DP [i] =
∑

0≤j<i
ki≤kj+d

DP [j]. (5)

4. Calculation order: We can calculate the entries of DP from the smallest index to the largest
index.

5. Extracting the solution: All we have to do is read the value at DP [n].

6. Running time: For i = 0, DP [0] is computed in O(1) time. For i ≥ 1, the entry DP [i] is
computed in O(i) time (as we potentially need to take the sum of i entries). �erefore, the total
runtime is O(1) +

∑n
i=1O(i) = O(n2).

(b) If you know that ki > ki−1 + d/10 for every i ∈ [n], how can you turn the above algorithm into a
linear time algorithm (i.e., an algorithm that has O(n) runtime) ?

Solution:

Assuming that ki > ki−1 + d/10 for all i, we know that ki > ki−10 + d, and hence ki > kj + d for
all j ≤ i− 10. �erefore, the sum in formula (5) contains at most 10 terms DP [j] (and for each of
them we can check in constant time whether we should include it or not, i.e., whether ki ≤ kj +d).
So in this case the computation of the entry DP [i] takes time O(1) for all 0 ≤ i ≤ n, and hence
the total runtime is O(n).

Exercise 7.3 Safe pawn lines (1 point).

On an N ×M chessboard (N being the number of rows and M the number of columns), a safe pawn
line is a set of M pawns with exactly one pawn per column of the chessboard, and such that every two
pawns from adjacent columns are located diagonally to each other. When a pawn line is not safe, it is
called unsafe.

�e �rst two chessboards below show safe pawn lines, the la�er two unsafe ones. �e line on the third
chessboard is unsafe because pawns d4 and e4 are located on the same row (rather than diagonally);
the line on the fourth chessboard is unsafe because pawn a5 has no diagonal neighbor at all.

6 0Z0Z0Z
5 Z0Z0Z0
4 0Z0o0Z
3 o0o0o0
2 0o0Z0o
1 Z0Z0Z0

a b c d e f

4 pZp
3 ZpZ
2 0Z0
1 Z0Z

a b c

4 0Z0opZ
3 Z0o0Zp
2 0o0Z0Z
1 o0Z0Z0

a b c d e f

5 o0Z0Z
4 0Z0o0
3 Z0o0o
2 0o0Z0
1 Z0Z0Z

a b c d e

Describe a DP algorithm that, given N,M > 0, counts the number of safe pawn lines on an N ×M
chessboard. In your solution, address the same six aspects as in Exercise 7.1. Your solution should have
complexity at most O(NM).

3



Solution:

1. Dimensions of the DP table: DP [1 . . . N ][1 . . .M ]

2. De�nition of the DP table: DP [i][j] counts the number of distinct safe pawn lines on an N × j
chessboard with the pawn in the last column located in row i. For example, for N = 4, we have
DP [3][3] = 3, since 3 safe pawn lines on a 4× 3 chessboard have their last pawn in row 3, namely:

4 0Z0
3 Z0o
2 0o0
1 o0Z

a b c

4 0Z0
3 o0o
2 0o0
1 Z0Z

a b c

4 0o0
3 o0o
2 0Z0
1 Z0Z

a b c

3. Computation of an entry: DP can be computed recursively as follows:

DP [i][1] = 1 1 ≤ i ≤ N (6)
DP [1][j] = DP [2][j − 1] 1 < j ≤M (7)
DP [N ][j] = DP [N − 1][j − 1] 1 < j ≤M (8)
DP [i][j] = DP [i− 1][j − 1] + DP [i + 1][j − 1] 1 < i < N, 1 < j ≤M (9)

Equation (6) solves the base case where the chessboard has only one column. In that case, there exists
exactly one safe pawn line. Equation (9) provides the general recurrence formula. �e rationale
behind this formula it is as follows: a pawn line on a N × j chessboard with its last pawn in row i is
obtained by adding a single pawn located at (j, i) (the black pawn on the board below) to a pawn line
on aN×(j−1) chessboard (the red pawns on �rst board below). Clearly, the last pawn of the smaller
line must be on row i+ 1 or i− 1. Hence, we have DP [i][j] = DP [i− 1][j− 1] +DP [i+ 1][j− 1].
However, this is not true when we have the edge cases i = 1 or i = N . In these cases, only one
position is available for the last pawn of the smaller line, yielding formulae (7) and (8).

5 Z0Z0Z0
4 0o0Z0Z
3 o0o0Z0
2 0Z0o0o
1 Z0Z0o0

a b c d e f

4. Calculation order: We �rst compute by order of increasing j, and then in an arbitrary order for i (for
example, in increasing order).

5. Extracting the solution: �e solution is
∑N

i=1DP [i][M ].

6. Running time: �e running time of the solution is O(MN), as there are NM entries in the table
which are processed in O(1) time, and extracting the solution takes O(N) ≤ O(MN) time.

Exercise 7.4 String Counting (1 point).

Given a binary string S ∈ {0, 1}n of length n, let f(S) be the length of the longest substring of con-
secutive 1s. For example f(”0110001101110001”) = 3 because the string contains ”111” (underlined)

4



but not ”1111”. Given n and k, the goal is to count the number of binary strings S of length n where
f(S) = k.

Write the pseudocode of an algorithm that, given positive integers n and k where k ≤ n, reports the
required answer. For full points, the running time of your solution can be any polynomial in n and k
(e.g., even O(n11k20) is acceptable).

Hint: �e intended solution has complexity O(nk2).

In your solution, address the same six aspects as in Exercise 7.1.

Solution:

1. Dimensions of the DP table: DP [1 . . . n][0 . . . k + 1][0 . . . k + 1]

2. De�nition of the DP table: Given a string S, let g(S) be the length of the (longest) su�x of “all
ones”. For example, g(”01011”) = 2, g(”010110”) = 0, g(”01101010111”) = 3. �e entry
DP [len][maks][curr] represents the number of binary stringsS of length exactly lenwhere f(S) =
maks and g(S) = curr.

3. Computation of an entry: While each entry can be computed directly, in this case it is a bit easier to
compute it indirectly. Namely, we take the entire collection of strings S = {S1, S2, . . .} represented
by some entry dp[len][maks][curr] = |S| and append “0” to all of them: {S1 + ”0”, S2 + ”0”, . . .}.
All of them correspond to the entry dp[len + 1][maks][0], hence we increase the la�er entry by
dp[len][maks][curr]. Similarly, we append “1” to all of S and obtain {S1 + ”1”, S2 + ”1”, . . .}. All
of them correspond to the entry dp[len+1][max(maks, curr+1)][curr+1], hence we analogously
increase that entry by dp[len][maks][curr]. �e base corresponds when len = 1, where the only
strings are “0” and “1”. Hence, dp[1][1][1] = 1 and dp[1][0][0] = 1, while dp[1][1][0] = 0 and
dp[1][0][1] = 0.

4. Calculation order: �e entries can be calculated in order of increasing len. �ere is no interaction
between entries with the same len, hence the order within the same value of len can be arbitrary.

5. Extracting the solution: �e solution is extracted by summing up over all possible values curr of
g(S):

∑k
curr=0 dp[n][k][curr].

6. Running time: �e running time of the solution is O(nk2) as there are O(nk2) entries in the table,
each of which is processed in O(1) time, and the solution is extracted in O(k) ≤ O(nk2).

7. Explicitly write out the full pseudocode.

5



Algorithm 1
1: Input: integers n, k.
2: De�ne dp[1 . . . n][0 . . . k + 1][0 . . . k + 1], initialized to 0.
3: dp[1][0][0]← 1
4: dp[1][1][1]← 1
5: for len ∈ {1, . . . , n− 1} do
6: for maks ∈ {0, . . . , k} do
7: for curr ∈ {0, . . . , k} do
8: val← dp[len][maks][curr]
9: if val 6= 0 then . Prevents going out-of-bounds.

10: (Note: let a +← b be the shorthand for a← a + b.)
11: dp[len + 1][maks][0]

+← val . Append 0.
12: dp[len + 1][max(maks, curr + 1)][curr + 1]

+← val . Append 1.
13: sol← 0
14: for curr ∈ {0, 1, . . . , k} do
15: sol← sol + dp[n][k][curr]

16: Print(“solution = “, sol)

Exercise 7.5 Longest Snake.

You are given a game-board consisting of hexagonal �elds F1, . . . , Fn. �e �elds contain natural num-
bers v1, . . . , vn ∈ N. Two �elds are neighbors if they share a border. We call a sequence of �elds
(Fi1 , . . . , Fik) a snake of length k if, for j ∈ {1, . . . , k − 1}, Fij and Fij+1 are neighbors and their
values satisfy vij+1 = vij + 1. Figure 1 illustrates an example game board in which we highlighted the
longest snake.

For simplicity you can assume that Fi are represented by their indices. Also you may assume that you
know the neighbors of each �eld. �at is, to obtain the neighbors of a �eld Fi you may call N (Fi),
which will return the set of the neighbors of Fi. Each call of N takes unit time.

(a) Provide a dynamic programming algorithm that, given a game-board F1, . . . , Fn, computes the
length of the longest snake.

1

2

3

3

4

5

6 7 8

1211

10

10 9

11 2

20

21

9

6

1312

1

5

Figure 1: Example of a longest snake.

6



Hint: Your algorithm should solve this problem using O(n log n) time, where n is the number of
hexagonal �elds.

Address the same six aspects as in Exercise 7.1 in your solution.

Solution:

1. Dimensions of the DP table: �e DP table is linear, its size is n.

2. De�nition of the DP table: DP [i] is the length of the longest snake with head Fi (that is, the
length of the longest snake of the form (Fj1 , . . . , Fjm−1 , Fi)).

3. Computation of an entry:
DP [i] = 1 + max

Fj∈N (Fi)
vj=vi−1

DP [j].

�at is, we look at those neighbors of Fi that have values vj smaller than vi exactly by 1, and
choose the maximal value in the DP table among them. If there are no such neighbors, we de�ne
max in this formula to be 0.

4. Calculation order: We �rst sort the hexagons by their values. �en we �ll the table in ascending
order, that is, i1, . . . , in such that vij ≤ vij+1 for all j = 1, . . . n− 1.

5. Extracting the solution: �e output is max
1≤i≤n

DP [i].

6. Running time: We compute the order in time O(n log n) by sorting v1, . . . , vn. �en each entry
can be computed in time O(1) and �nally we compute the output in time O(n). So the running
time of the algorithm is O(n log n).

(b) Provide an algorithm that takes as input F1, . . . Fn and a DP table from part a) and outputs the
longest snake. If there are more than one longest snake, your algorithm can output any of them.
State the running time of your algorithm in Θ-notation in terms of n.

Solution:

At the beginning we �nd a head of a snake that is some Fj1 such that DP [j1] = max
1≤i≤n

DP [i].

If DP [j1] 6= 1, we look at its neigbours and �nd some Fj2 such that DP [j2] = DP [j1] − 1. If
DP [j2] 6= 1, then among neighbors of Fj2 we �nd some Fj3 such that DP [j3] = DP [j2]− 1 and
so on. We stop when DP [jm] = 1 (where m is exactly the length of the longest snake). �en we
output the snake (Fj1 , . . . , Fjm).

�e running time of this algorithm is Θ(n), since we use Θ(n) operations to �nd Fj1 and we need
Θ(1) time to �nd each Fjk for 1 < k ≤ m ≤ n and Θ(m) time to output the snake.

Remark. An alternative solution would be to store the predecessor in a longest snake with head
Fi directly in DP [i] (in addition to the length of this longest snake), and store ∅ if the length of the
longest snake is just 1. �en, in order to recover a longest snake, we simply need to �nd a head of
a snake that has maximal length and then follow the sequence of predecessors until we reach an
entry DP [i] that has ∅ as predecessor.

*(c) Find a linear time algorithm that �nds the longest snake. �at is, provide an O(n) time algorithm
that, given a game-board F1, . . . , Fn, outputs the longest snake (if there are more than one longest
snake, your algorithm can output any of them).

Solution:

7



We can use recursion with memorization. Similar to part a), we will �ll an array S[1, . . . , n] of
lengths of longest snakes, that is, S[i] is the length of the longest snake with head Fi. Consider the
following pseudocode:

Algorithm 2 Fill-lengths(v1, . . . , vn)

S[1], . . . , S[n]← 0, . . . , 0
for i = 1, . . . , n do

if S[i] = 0 then
Move-to-tails(i, S, v1, . . . , vn)

return S

where the procedure Move-to-tails(i, S, v1, . . . , vn) is:

Algorithm 3 Move-to-tails(i, S, v1, . . . , vn)

for Fj ∈ N (Fi) do
if vj = vi − 1 and S[j] = 0 then

Move-to-tails(j, S, v1, . . . , vn)

S[i] = 1 + max
Fj∈N (Fi)
vj=vi−1

S[j]

As in part a), we assume that max over the empty set is 0. Let us show why this procedure is correct.
First, since the algorithm Move-to-tails is recursive, we have to check that it actually �nishes. Move-
to-tails(i, S, v1, . . . , vn) is calling Move-to-tails only for indices j with vj < vi, and therefore an
easy induction on vj shows that the algorithm will always terminate. We now show the correctness
of Move-to-tails(i, S, v1, . . . , vn) by induction on vi.

Base case vi = 1: If vi = 1, then there is no j such that vj = vi − 1. �erefore, the max in Move-
to-tails(i, S, v1, . . . , vn) is empty, so S[i] is set to 1, which is indeed the length of a longest
snake with head Fi when vi = 1.

Induction hypothesis: A�er calling Move-to-tails(i, S, v1, . . . , vn) with vi = k, the value of S[i]
contains the length of the longest snake with head Fi.

Induction step k → k + 1: Let i be an index with vi = k + 1. �en for any Fj ∈ N (Fi) such
that vj = vi − 1, we have vj = k, so by the induction hypothesis a�er calling Move-to-
tails(j, S, v1, . . . , vn) the value of S[j] contains the length of the longest snake with head Fj .
�erefore, a�er se�ing

S[i] = 1 + max
Fj∈N (Fi)
vj=vi−1

S[j],

the value of S[i] indeed contains the length of the longest snake with head Fi.

A�er we �ll S, we can use the same algorithm as in part b) to �nd a longest snake (we should
replace DP by S in the description of that algorithm).

For the runtime, we will show that for each i ∈ {1, . . . , n}we call Move-to-tails(i, S, v1, . . . , vn) ex-
actly once. Indeed, it is called only whenS[i] = 0, and a�er the �rst call of Move-to-tails(i, S, v1, . . . , vn)
has terminated, we have S[i] > 0 by the invariant for the rest of the algorithm. So Move-to-
tails(i, S, v1, . . . , vn) will not be called a second time a�er the �rst call has terminated. While
the �rst call of Move-to-tails(i, S, v1, . . . , vn) is running, Move-to-tails is only called for indices

8



j with vj < vi, which follows from a very simple induction. So Move-to-tails(i, S, v1, . . . , vn) is
also not called a second time while the �rst call is still running. So we have shown that Move-
to-tails(i, S, v1, . . . , vn) is called exactly once for each i. �erefore, the running time is linear in
n.

�e technique that we used here is closely related to depth-�rst search and topological ordering of
a graph. �ese topics will be studied later in this course.

9


